{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Iris Species\n", "\n", "Classify iris plants into three species in this classic dataset.\n", "\n", "Tutorial from https://machinelearningmastery.com/machine-learning-with-python/" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "# 1. Prepare Problem\n", "# a) Load libraries\n", "from pandas import read_csv\n", "import pandas as pd\n", "import numpy as np\n", "from pandas.plotting import scatter_matrix\n", "from matplotlib import pyplot\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.model_selection import KFold\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.metrics import classification_report\n", "from sklearn.metrics import confusion_matrix\n", "from sklearn.metrics import accuracy_score\n", "from sklearn.linear_model import LogisticRegression\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.neighbors import KNeighborsClassifier\n", "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis\n", "from sklearn.naive_bayes import GaussianNB\n", "from sklearn.svm import SVC\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | sepal-length | \n", "sepal-width | \n", "petal-length | \n", "petal-width | \n", "class | \n", "
---|---|---|---|---|---|
1 | \n", "5.1 | \n", "3.5 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
2 | \n", "4.9 | \n", "3.0 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
3 | \n", "4.7 | \n", "3.2 | \n", "1.3 | \n", "0.2 | \n", "Iris-setosa | \n", "
4 | \n", "4.6 | \n", "3.1 | \n", "1.5 | \n", "0.2 | \n", "Iris-setosa | \n", "
5 | \n", "5.0 | \n", "3.6 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
6 | \n", "5.4 | \n", "3.9 | \n", "1.7 | \n", "0.4 | \n", "Iris-setosa | \n", "
7 | \n", "4.6 | \n", "3.4 | \n", "1.4 | \n", "0.3 | \n", "Iris-setosa | \n", "
8 | \n", "5.0 | \n", "3.4 | \n", "1.5 | \n", "0.2 | \n", "Iris-setosa | \n", "
9 | \n", "4.4 | \n", "2.9 | \n", "1.4 | \n", "0.2 | \n", "Iris-setosa | \n", "
10 | \n", "4.9 | \n", "3.1 | \n", "1.5 | \n", "0.1 | \n", "Iris-setosa | \n", "
11 | \n", "5.4 | \n", "3.7 | \n", "1.5 | \n", "0.2 | \n", "Iris-setosa | \n", "
12 | \n", "4.8 | \n", "3.4 | \n", "1.6 | \n", "0.2 | \n", "Iris-setosa | \n", "
13 | \n", "4.8 | \n", "3.0 | \n", "1.4 | \n", "0.1 | \n", "Iris-setosa | \n", "
14 | \n", "4.3 | \n", "3.0 | \n", "1.1 | \n", "0.1 | \n", "Iris-setosa | \n", "
15 | \n", "5.8 | \n", "4.0 | \n", "1.2 | \n", "0.2 | \n", "Iris-setosa | \n", "
16 | \n", "5.7 | \n", "4.4 | \n", "1.5 | \n", "0.4 | \n", "Iris-setosa | \n", "
17 | \n", "5.4 | \n", "3.9 | \n", "1.3 | \n", "0.4 | \n", "Iris-setosa | \n", "
18 | \n", "5.1 | \n", "3.5 | \n", "1.4 | \n", "0.3 | \n", "Iris-setosa | \n", "
19 | \n", "5.7 | \n", "3.8 | \n", "1.7 | \n", "0.3 | \n", "Iris-setosa | \n", "
20 | \n", "5.1 | \n", "3.8 | \n", "1.5 | \n", "0.3 | \n", "Iris-setosa | \n", "